Inequalities of Rafalson type for algebraic polynomials

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 184
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKwon, Kil Hyunko
dc.contributor.authorLee, DWko
dc.date.accessioned2013-03-04T08:28:32Z-
dc.date.available2013-03-04T08:28:32Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2004-06-
dc.identifier.citationJOURNAL OF APPROXIMATION THEORY, v.128, pp.175 - 186-
dc.identifier.issn0021-9045-
dc.identifier.urihttp://hdl.handle.net/10203/82170-
dc.description.abstractFor a positive Borel measure dmu, we prove that the constant gamma(n) (dv; dy) := (pi is an element ofPn\{0})sup integral-(infinity)(infinity) pi(2) (x)dmu(x)/<(∫-(infinity)(∞))over bar> pi(2) (x) dmu (x), can be represented by the zeros of orthogonal polynomials corresponding to dy in case (i) dv(x) = (A + Bx)dmu(x), where A + Bx is nonnegative on the support of dmu and (ii) dv(x) = (A + Bx(2))dmu(x), where dy is symmetric and A + Bx(2) is nonnegative on the support of dy. The extremal polynomials attaining the constant are obtained and some concrete examples are given including Markov-type inequality when dy is a measure for Jacobi polynomials. (C) 2004 Elsevier Inc. All rights reserved.-
dc.languageEnglish-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.titleInequalities of Rafalson type for algebraic polynomials-
dc.typeArticle-
dc.identifier.wosid000222401300004-
dc.identifier.scopusid2-s2.0-3543078714-
dc.type.rimsART-
dc.citation.volume128-
dc.citation.beginningpage175-
dc.citation.endingpage186-
dc.citation.publicationnameJOURNAL OF APPROXIMATION THEORY-
dc.identifier.doi10.1016/j.jat.2004.04.009-
dc.contributor.localauthorKwon, Kil Hyun-
dc.contributor.nonIdAuthorLee, DW-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorinequalities of Rafalson type-
dc.subject.keywordAuthororthogonal polynomials-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0