Improved neural network model for reverse engineering

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 293
  • Download : 0
While conventional engineering transforms engineering concepts into real parts, in reverse engineering real parts are transformed into engineering models. The construction of a surface from three-dimensional (3D) measuring data points is an important problem in reverse engineering. This paper presents a reconstruction method for the sculptured surfaces from the 3D measuring data points. The surface reconstruction scheme is presented based on a neural network. The reconstruction of the existing surfaces is realized by training the network. A series of measuring points from existing sculptured surfaces is used as a training set. Once the neural network has been trained, it serves as a geometric model to generate all the points that are needed. However, the learning rate for the neural network is relatively slow, and the learning accuracy is often unacceptably low. In this paper, to improve the performance of the neural network, a pre-processor is proposed before the input layer. The pre-processor maps the input into the larger space by generating a set of linearly independent values. The effect of the pre-processor is to increase modelling accuracy, and reduce learning time. Based on this method, experimental results are given to show that the reconstructed surfaces are faithful to the original data points. The proposed scheme is useful for regular or irregular digitized data.
Publisher
TAYLOR FRANCIS LTD
Issue Date
2000-06
Language
English
Article Type
Article
Keywords

SURFACE APPROXIMATION; B-SPLINE; INTERPOLATION; POINTS

Citation

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, v.38, no.9, pp.2067 - 2078

ISSN
0020-7543
URI
http://hdl.handle.net/10203/76811
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0