Electronic cash protocol over elliptic curves = 타원곡선위에서의 전자현금 프로토콜

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 382
  • Download : 0
DC FieldValueLanguage
dc.contributor.advisorHahn, Sang-Geun-
dc.contributor.advisor한상근-
dc.contributor.authorLee, Dong-Hoon-
dc.contributor.author이동훈-
dc.date.accessioned2011-12-14T05:00:07Z-
dc.date.available2011-12-14T05:00:07Z-
dc.date.issued1996-
dc.identifier.urihttp://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=105893&flag=dissertation-
dc.identifier.urihttp://hdl.handle.net/10203/42429-
dc.description학위논문(석사) - 한국과학기술원 : 수학과, 1996.2, [ 22 p. ; ]-
dc.description.abstractSo far an electronic cash is based on the discrete logarithm on $GF(q)^*$ for its security. But there is a efficient attack called the index calculus attack. Whereas at present no subexponential algorithm is known for the discrete logarithm problem on a general elliptic curve. Hence in this paper we construct an electronic cash over an elliptic curve, and improve the divisibility of the previous ones. We modify the Brands`` scheme and Lim-Lee``s. This satisfies all the criteria of Okamoto for an ideal cash.eng
dc.languageeng-
dc.publisher한국과학기술원-
dc.subjectElliptic Curve-
dc.subjectElectronic Cash-
dc.subjectOptimal Normal Basis-
dc.subject최적정규기저-
dc.subject타원곡선-
dc.subject전자현금-
dc.titleElectronic cash protocol over elliptic curves = 타원곡선위에서의 전자현금 프로토콜-
dc.typeThesis(Master)-
dc.identifier.CNRN105893/325007-
dc.description.department한국과학기술원 : 수학과, -
dc.identifier.uid000943385-
dc.contributor.localauthorHahn, Sang-Geun-
dc.contributor.localauthor한상근-
Appears in Collection
MA-Theses_Master(석사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0