#### Zero distribution of orthogonal polynomials직교다항식의 근의 분포

Cited 0 time in Cited 0 time in • Hit : 498
DC FieldValueLanguage
dc.contributor.authorKim, Deok-Ho-
dc.contributor.author김덕호-
dc.date.accessioned2011-12-14T04:59:37Z-
dc.date.available2011-12-14T04:59:37Z-
dc.date.issued1995-
dc.identifier.urihttp://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=98711&flag=dissertation-
dc.identifier.urihttp://hdl.handle.net/10203/42398-
dc.description학위논문(석사) - 한국과학기술원 : 수학과, 1995.2, [ [ii], 20 p. ]-
dc.description.abstractIn , Karlin and Szego conjectured : If \${P_n(x)}^∞_{n=0}\$ is an orthogonal polynomial system and \${P``_{n}(x)}^∞_{n=1}\$ is a Sturm sequence, then \${P_n(x)}^∞_{n=0}\$ is essentially (that is, after a linear change of variable) a classical orthogonal polynomial system of Jacobi, Laguerre, or Hermite. Here, we prove that for any orthogonal polynomial system \${P_n(x)}^∞_{n=0}\$, \${P``_{n}(x)}^∞_{n=1}\$ is always a Sturm sequence. Thus, in particular, the above conjecture by Karlin and Szeg\$&ouml;\$ is false. And zero distribution of the polynomials \${S_{n}(x)}^∞_{n=0}\$ which are orthogonal with respect to the discrete Sobolev inner product type. ＜f,g> = ∫_If(x)g(x)dμ(x)+\$Nf^{(r)}(c)g^{(r)}(c)\$ where I is a real interval, with I = [a,b], a,b ∈ R, N ≥ 0, r ≥ 1, c ≥ b and let μ(x) be an arbitrary distribution function on I. \$S_{n}(x)\$ has n real, simple zeros. The location of these zeros is given in relation to the position of the zeros of some classical polynomials (i.e., polynomials with respect to an inner product with N=0).eng
dc.languageeng-
dc.publisher한국과학기술원-
dc.titleZero distribution of orthogonal polynomials-
dc.title.alternative직교다항식의 근의 분포-
dc.typeThesis(Master)-
dc.identifier.CNRN98711/325007-
dc.description.department한국과학기술원 : 수학과, -
dc.identifier.uid000933045-
dc.contributor.localauthorKwon, Kil-Hun-
dc.contributor.localauthor권길헌-
Appears in Collection
MA-Theses_Master(석사논문)
Files in This Item
There are no files associated with this item. 