Uniform distribution modulo 2모듈로 2 균일분포

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 437
  • Download : 0
DC FieldValueLanguage
dc.contributor.advisorChoe, Geoun-Ho-
dc.contributor.advisor최건호-
dc.contributor.authorHong, Joong-Sik-
dc.contributor.author홍중식-
dc.date.accessioned2011-12-14T04:57:37Z-
dc.date.available2011-12-14T04:57:37Z-
dc.date.issued1992-
dc.identifier.urihttp://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=59964&flag=dissertation-
dc.identifier.urihttp://hdl.handle.net/10203/42273-
dc.description학위논문(석사) - 한국과학기술원 : 수학과, 1992.2, [ [ii], 22 p. ]-
dc.description.abstractLet $\tau$ be any ergodic measure preserving transformation and let $\tau_2$ be one sided shift on [0,1). In comparison with the Kronecker-Weyl theorem modulo 2, we investigate the existence and the value of the limit of $\frac{1}{N} \displaystyle\sum^N_1 y_n$, where $y_n\equiv\displaystyle\sum^{n-1}_{k=0} χ_I(\tau^kx)$ (mod 2), $y_n \in {0,1}$. The limit is equal $\frac{1}{2}$ if $exp(\pi i\chi_I(x))$ is not a coboundary. When $\tau$ = $\tau_2$, the limit is equal to $\frac{1}{2}$, if I = [a,b] is contained in $[0,\frac{3}{4}]$ or [$\frac{1}{4}$,1], where a, b are of the form $\displaystyle\sum^N_{j=1}c_j2^{-j}$, $c_j\in{0,1}$.eng
dc.languageeng-
dc.publisher한국과학기술원-
dc.titleUniform distribution modulo 2-
dc.title.alternative모듈로 2 균일분포-
dc.typeThesis(Master)-
dc.identifier.CNRN59964/325007-
dc.description.department한국과학기술원 : 수학과, -
dc.identifier.uid000901594-
dc.contributor.localauthorChoe, Geoun-Ho-
dc.contributor.localauthor최건호-
Appears in Collection
MA-Theses_Master(석사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0