On the bit security of the weak Diffie-Hellman problem = Weak Diffie-Hellman 문제의 비트 안전성

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 353
  • Download : 0
Boneh and Venkatesan proposed a problem called the \textit{hidden number problem} and they gave a polynomial time algorithm to solve it. And they showed that one can compute $g^{xy}$ from $g^{x}$ and $g^{y}$ if one has an oracle which computes roughly $\sqrt{\log p}$ most significant bits of $g^{xy}$ from given $g^{x}$ and $g^{y}$ in $\mathbb F_{p}$ by using an algorithm for solving the hidden number problem. Later, Shparlinski showed that one can compute $g^{x^{2}}$ if one can compute roughly $\sqrt{\log p}$ most significant bits of $g^{x^{2}}$ from given $g^{x}$. In this paper we extend these results by using some improvements on the hidden number problem and the bound of exponential sums. We show that for given $g, g^{\alpha}, \ldots, g^{\alpha^{l}} \in \mathbb F_{\it p}^{*}$, computing about $\sqrt{\log p}$ most significant bits of $g^{\frac{1}{\alpha}}$ is as hard as computing $g^{\frac{1}{\alpha}}$ itself, provided that the multiplicative order of $g$ is prime and not too small. Furthermore, we show that we can do it when $g$ has even much smaller multiplicative order in some special cases.
Advisors
Hahn, Sang-Geunresearcher한상근researcher
Description
한국과학기술원 : 수리과학과,
Publisher
한국과학기술원
Issue Date
2011
Identifier
466390/325007  / 020047188
Language
eng
Description

학위논문(박사) - 한국과학기술원 : 수리과학과, 2011.2, [ iii, 25 p. ]

Keywords

Hidden number problem; Cryptography; Weak Diffie-Hellman problem; Weak Diffie-Hellman 문제; 숨겨진 수 문제; 암호학

URI
http://hdl.handle.net/10203/41951
Link
http://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=466390&flag=dissertation
Appears in Collection
MA-Theses_Ph.D.(박사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0