Decompositions of factor codes인수함수의 분할에 관한 연구

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 487
  • Download : 0
DC FieldValueLanguage
dc.contributor.advisorShin, Su-Jin-
dc.contributor.advisor신수진-
dc.contributor.authorLee, In-Je-
dc.contributor.author이인제-
dc.date.accessioned2011-12-14T04:40:57Z-
dc.date.available2011-12-14T04:40:57Z-
dc.date.issued2010-
dc.identifier.urihttp://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=455385&flag=dissertation-
dc.identifier.urihttp://hdl.handle.net/10203/41946-
dc.description학위논문(박사) - 한국과학기술원 : 수리과학과, 2010.08, [ ii, 54 p. ]-
dc.description.abstractThe purpose of this work is to present the properties of sliding block codes between shift spaces, especially the existence, the extension and the decomposition. We investigate the existence and the extension of graph homomorphisms. We prove that for given two graphs there is a bi-resolving (or bi-covering) graph homomorphism between them exactly when their adjacency matrices satisfy certain matrix relations in Chapter 3. We give some sufficient conditions for a bi-resolving graph homomorphism to have a bi-covering extension with an irreducible domain, and prove that any bi-closing code between shift spaces can be extended to an $\It{n}$-to-1 code between irreducible shifts of finite type for all large $\It{n}$. In Chapter 4 we prove that for any embedding from a shift space to a mixing shift of finite type and for any number $\It{h}$ lying between their entropies, there exists a decomposition of the given code such that the intermediate shift space has $\It{h}$ as its entropy. We show that this does not hold when an embedding is replaced with a factor code. We present some conditions for a factor code between shift spaces to have a decomposition.eng
dc.languageeng-
dc.publisher한국과학기술원-
dc.subjectshift space-
dc.subject엔트로피-
dc.subject인수함수-
dc.subject천이공간-
dc.subject기호동역학-
dc.subjectentropy-
dc.subjectfactor code-
dc.subjectsymbolic dynamics-
dc.titleDecompositions of factor codes-
dc.title.alternative인수함수의 분할에 관한 연구-
dc.typeThesis(Ph.D)-
dc.identifier.CNRN455385/325007 -
dc.description.department한국과학기술원 : 수리과학과, -
dc.identifier.uid020037491-
dc.contributor.localauthorShin, Su-Jin-
dc.contributor.localauthor신수진-
Appears in Collection
MA-Theses_Ph.D.(박사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0