Arithmetic properties of Siegel functions and applications지겔함수의 산술성과 응용

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 442
  • Download : 0
DC FieldValueLanguage
dc.contributor.advisorKoo, Ja-Kyung-
dc.contributor.advisor구자경-
dc.contributor.authorShin, Dong-Hwa-
dc.contributor.author신동화-
dc.date.accessioned2011-12-14T04:40:44Z-
dc.date.available2011-12-14T04:40:44Z-
dc.date.issued2010-
dc.identifier.urihttp://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=418764&flag=dissertation-
dc.identifier.urihttp://hdl.handle.net/10203/41932-
dc.description학위논문(박사) - 한국과학기술원 : 수리과학과, 2010.2, [ iii, 60 p. ]-
dc.description.abstractIn this thesis we mainly focus on the generation of class fields by the singular values of Siegel functions. Siegel functions are modular functions which have zeros and poles only at the cusps. We investigate basic transformation formulas of Siegel functions and give a criterion to determine whether a product of Siegel functions is integral over $\mathbb{Z}[j]$, where $\It{j}$ is the elliptic modular function. To accomplish our goal we make a change of variables of an elliptic curve and obtain a new $\It{y}$-coordinate. The $\It{y}$ -coordinate as a function on the complex upper half plane generates a family of modular functions of level $\It{N}\ge3$ which constitute the field of modular functions of level $\It{N}\ge3$ together with the elliptic modular function. These functions in fact are quotients of Siegel functions and play the role of classical Fricke functions. Based on the Shimura`s reciprocity law which connects the theory of modular function fields and class field theory we construct primitive generators of ray class fields over imaginary quadratic fields by utilizing the singular values of the $\It{y}$ -function. Moreover, the conjugates of high powers of the singular values form normal bases of ray class fields over imaginary quadratic fields. This result simplifies that of Ramachandra who completely settled down the Hilbert 12th problem for the case of construction of class fields of imaginary quadratic fields.eng
dc.languageeng-
dc.publisher한국과학기술원-
dc.subjectelliptic curves-
dc.subject복소곱정리-
dc.subjectclass fields-
dc.subjectSiegel functions-
dc.subjectShimura`s reciprocity law-
dc.subjectcomplex multiplication-
dc.subject유체-
dc.subject타원곡선-
dc.subject지겔함수-
dc.subject시무라 상호법칙-
dc.titleArithmetic properties of Siegel functions and applications-
dc.title.alternative지겔함수의 산술성과 응용-
dc.typeThesis(Ph.D)-
dc.identifier.CNRN418764/325007 -
dc.description.department한국과학기술원 : 수리과학과, -
dc.identifier.uid020065086-
dc.contributor.localauthorKoo, Ja-Kyung-
dc.contributor.localauthor구자경-
Appears in Collection
MA-Theses_Ph.D.(박사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0