Elliptic curve discrete logarithm and lifting problem = 타원곡선 이산로그와 올림 문제

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 499
  • Download : 0
DC FieldValueLanguage
dc.contributor.advisorHahn, Sang-Geun-
dc.contributor.advisor한상근-
dc.contributor.authorKim, Hwan-Joon-
dc.contributor.author김환준-
dc.date.accessioned2011-12-14T04:39:01Z-
dc.date.available2011-12-14T04:39:01Z-
dc.date.issued2000-
dc.identifier.urihttp://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=157756&flag=dissertation-
dc.identifier.urihttp://hdl.handle.net/10203/41821-
dc.description학위논문(박사) - 한국과학기술원 : 수학전공, 2000.2, [ [ii], [33] p. ]-
dc.description.abstractNo subexponential time algorithm is known yet for the Elliptic Curve Discrete Logarithm Problem(ECDLP) except the cases of singular curves, supersingular curves and anomalous curves. In this paper, we introduce the lifting problem and show that it implies the ECDLP and integer factorization problem(IFP) and we note that finding a point in $E_1(Q)$, the kernel of the reduction map, also implies the ECDLP and the IFP since it solves the lifting problem. Moreover, we analyze the difficulty of the lifting problem by estimating the minimum of the canonical heights on the kernel of the reduction map.eng
dc.languageeng-
dc.publisher한국과학기술원-
dc.subjectDiscrete logarithm-
dc.subjectFactorization-
dc.subject타원곡선-
dc.subject이산로그-
dc.subject소인수 분해-
dc.subjectElliptic curve-
dc.titleElliptic curve discrete logarithm and lifting problem = 타원곡선 이산로그와 올림 문제-
dc.typeThesis(Ph.D)-
dc.identifier.CNRN157756/325007-
dc.description.department한국과학기술원 : 수학전공, -
dc.identifier.uid000955104-
dc.contributor.localauthorHahn, Sang-Geun-
dc.contributor.localauthor한상근-
Appears in Collection
MA-Theses_Ph.D.(박사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0