In this thesis, we are concerned with the skew products of ergodic transformations. Investigating the ergodic properties of skew products is equivalent to investigating the existence of solution of the corresponding coboundary equation. The main purpose of this thesis is to investigate the solvability of coboundary equations and to generalize the Borel``s normal number theorem.
In Chapter 3, on the unit interval [0,1) it is proved that a real-valued function $f(x)=exp(πi 1_I(x))$ is not of the form $f(x)=\overline{q(2x)}q(x)$, $|q(x)|=1$ a.e. if the interval I has dyadic endpoints. Its relation with the uniform distribution mod 2 is also shown.
In Chapter 4, for the transformation T: x → kx (mod 1) for k ≥ 2, it is proved that a real-valued function f(x) of modulus 1 is not a multiplicative coboundary if the discontinuities $0 ＜ x_1 ＜ … < x_n ≤ 1$ of f(x) are k-adic points and $x_1 ≥ \frac {1}{k}$. It is also proved that the induced skew product is weakly mixing.
In Chapter 5, let ρ: G → U(H) be an irreducible unitary representation of a compact group G. For Bernoulli shifts, the solvability of ρ(φ(x))g(Tx)=g(x) is investigated if φ(x) is a step function.
In Chapter 6, $Y= ∏_{- ∞}^{∞}{0, 1, … , k-1}$ where k ≤ ∞ and σ be a shift map on Y. The solvability of φ(x)g(Tx)=g(x) is investigated if $φ(x)=∑_{j=0}^{n}a_j 1_{B_j}(x)$ with complex values $a_j$ and cylinder sets $B_j$. Its relation with the uniform distribution mod M is also shown and we give a different proof of S. Siboni``s results.

- Advisors
- Choe, Geon-Ho
*researcher*; 최건호*researcher*

- Description
- 한국과학기술원 : 수학전공,

- Publisher
- 한국과학기술원

- Issue Date
- 2000

- Identifier
- 157754/325007 / 000945229

- Language
- eng

- Description
학위논문(박사) - 한국과학기술원 : 수학전공, 2000.2, [ 65 p. ]

- Keywords
Skew product; Ergodicity; 코바운더리; 에르고드 성질; 정규성; 혼합성질; Coboundary; Mixing; Normality; 경사곱

- Appears in Collection
- MA-Theses_Ph.D.(박사논문)

- Files in This Item
- There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.