#### Skew products arising from ergodic transformations에르고드 변환에 의한 경사곱에 관한 연구

Cited 0 time in Cited 0 time in • Hit : 387
In this thesis, we are concerned with the skew products of ergodic transformations. Investigating the ergodic properties of skew products is equivalent to investigating the existence of solution of the corresponding coboundary equation. The main purpose of this thesis is to investigate the solvability of coboundary equations and to generalize the Borels normal number theorem. In Chapter 3, on the unit interval [0,1) it is proved that a real-valued function $f(x)=exp(πi 1_I(x))$ is not of the form $f(x)=\overline{q(2x)}q(x)$, $|q(x)|=1$ a.e. if the interval I has dyadic endpoints. Its relation with the uniform distribution mod 2 is also shown. In Chapter 4, for the transformation T: x → kx (mod 1) for k ≥ 2, it is proved that a real-valued function f(x) of modulus 1 is not a multiplicative coboundary if the discontinuities $0 ＜ x_1 ＜ … < x_n ≤ 1$ of f(x) are k-adic points and $x_1 ≥ \frac {1}{k}$. It is also proved that the induced skew product is weakly mixing. In Chapter 5, let ρ: G → U(H) be an irreducible unitary representation of a compact group G. For Bernoulli shifts, the solvability of ρ(φ(x))g(Tx)=g(x) is investigated if φ(x) is a step function. In Chapter 6, $Y= ∏_{- ∞}^{∞}{0, 1, … , k-1}$ where k ≤ ∞ and σ be a shift map on Y. The solvability of φ(x)g(Tx)=g(x) is investigated if $φ(x)=∑_{j=0}^{n}a_j 1_{B_j}(x)$ with complex values $a_j$ and cylinder sets $B_j$. Its relation with the uniform distribution mod M is also shown and we give a different proof of S. Sibonis results.
Choe, Geon-Horesearcher최건호researcher
Description
한국과학기술원 : 수학전공,
Publisher
한국과학기술원
Issue Date
2000
Identifier
157754/325007 / 000945229
Language
eng
Description

학위논문(박사) - 한국과학기술원 : 수학전공, 2000.2, [ 65 p. ]

Keywords

Skew product; Ergodicity; 코바운더리; 에르고드 성질; 정규성; 혼합성질; Coboundary; Mixing; Normality; 경사곱

URI
http://hdl.handle.net/10203/41819 