Covolume methods for the Navier-Stokes problem = 나비어 스톡스 문제에 대한 코볼륨 방법

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 338
  • Download : 0
We extend recent results of covolume methods for the generalized Stokes problem to a stabilized problem and the stationary incompressible Navier-Stokes problem. Two partitions of the problem domain are needed, the primal partition and the dual partition. It turns out that the covolume methods in this thesis can be viewed as Petrov-Galerkin methods. Hence, some results of finite element methods are used in the analysis of the covolume methods. A stabilized covolume method for the Stokes problem can be formulated by modifying the divergence free condition. We prove that this scheme has a unique solution without the inf-sup condition and its linear convergence in $H^1$ semi-norm for the velocity and in $L^2$ norm for the pressure. We also present numerical results corresponding to this analysis. A major difficulty in numerical methods for the Navier-Stokes problem is in discretizing the convection term. We introduce a skew-symmetric form of the convection term in the problem of small data. We prove that the covolume method for the Navier-Stokes problem has a unique solution and its linear convergence in $H^1$ semi-norm for the velocity and in $L^2$ norm for the pressure. We also consider a multigrid algorithm for the cell centered finite difference scheme on triangular meshes. The energy norm of this prolongation operator is shown to be less than $\sqrt{2}$. Thus the W-cycle is guaranteed to converge. Numerical experiments show that the new prolongation operator is better than the trivial injection.
Kwak, Do-Youngresearcher곽도영researcher
한국과학기술원 : 수학전공,
Issue Date
157752/325007 / 000945031

학위논문(박사) - 한국과학기술원 : 수학전공, 2000.2, [ vii, 72 p. ]


Stabilized method; Petrov-Galerkin method; Navier-Stokes problem; Covolume method; Multigrid method; 다중격자법; 안정화; 페트로프 갈러킨 방법; 나비어 스톡스 문제; 공액영역법

Appears in Collection
Files in This Item
There are no files associated with this item.


  • mendeley


rss_1.0 rss_2.0 atom_1.0