#### \$L^p\$-Estimation for the gaussian quadratures and numerical application = 가우스 구적법에 대한 \$L^p\$ 추정 및 수치적 응용

Cited 0 time in Cited 0 time in
• Hit : 440
DC FieldValueLanguage
dc.contributor.authorKo, Kwan-Pyo-
dc.contributor.author고관표-
dc.date.accessioned2011-12-14T04:38:17Z-
dc.date.available2011-12-14T04:38:17Z-
dc.date.issued1995-
dc.identifier.urihttp://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=98572&flag=dissertation-
dc.identifier.urihttp://hdl.handle.net/10203/41773-
dc.description학위논문(박사) - 한국과학기술원 : 수학과, 1995.2, [ [ii], 53 p. ]-
dc.description.abstractGauss-type quadratures formulae (Gaussian quadrature, Gauss-Radau rule and Gauss-Lobatto rule) for analytic functions with Chebyshev weight functions, have been known for a long time. Recently, many authors [20][23] considered the Gaussian quadrature formulae for the Bernstein-Szego weight functions. Kaneko and Xu [14] established that application of the quadrature scheme yields numerical solutions of the weakly singular Fredholm integral equation of the second kind. For analytic functions it is well-known that the remainder term can be represented by the contour integral. In this work we present the \$L^2\$-estimation for the kernel \$K_n\$ of the remainder term with respect to one of four Chebyshev weight functions and the error bound of the type on the elliptic contour ◁수식 삽입▷(원문을 참조하세요) where l(Γ) denotes the length of the contour Γ and give an expression for the kernel \$K_n\$ of the remainder terms for Gauss-Radau and Gauss-Lobatto rules with end points of multiplicity r using the Laurent series expansion. Also we prove the convergence of kernel \$K_n\$ and obtain the error bound of the type ◁수식 삽입▷(원문을 참조하세요) on the circular and elliptic contours.eng
dc.languageeng-
dc.publisher한국과학기술원-
dc.title\$L^p\$-Estimation for the gaussian quadratures and numerical application = 가우스 구적법에 대한 \$L^p\$ 추정 및 수치적 응용-
dc.typeThesis(Ph.D)-
dc.identifier.CNRN98572/325007-
dc.description.department한국과학기술원 : 수학과, -
dc.identifier.uid000925013-
dc.contributor.localauthorChoi, U-Jin-
dc.contributor.localauthor최우진-
Appears in Collection
MA-Theses_Ph.D.(박사논문)
Files in This Item
There are no files associated with this item.