Hybrid genetic algorithms with reduced premature convergence for search performance enhancement = 탐색 성능 향상을 위한 감소된 조기 집중 현상을 갖는 하이브리드 유전 알고리즘

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 305
  • Download : 0
This thesis deals with the search performance enhancement techniques in genetic algorithms (GAs). Evolutionary algorithms are computational optimization techniques that use simulated evolution. In control area, especially the genetic algorithm has been widely used. Although GAs are good at finding near global optimum quickly, they are poor in the fine tuning of solutions, which may cause `premature convergence``. This thesis is aimed to improve the search performance of GAs with elitist strategy by reducing premature convergence through hybridization or appropriate modification to the algorithms. In order to accomplish the goals, three new genetic algorithms and two new local search operators are proposed. The first method, the modified genetic algorithm (MGA) consists of a fitness modification scheme and adaptive mutation operator. The second method, the adaptive genetic algorithm (AGA) determines crossover and mutation probabilities by itself according to the fitness of a solution to be crossed or mutated. The schema theorem for AGA is derived. The third method, adaptive simulated annealing genetic algorithm (ASAGA) uses simulated annealing-like mutation operator. A novel way of generating a new solution by using a gaussian random number with time-varying variance is proposed and proved to be effective. The first local search operator makes use of neural networks. The second one named SLSO (simple local search operator) uses the difference between the most recent best fitness and a newly found best solution``s fitness, which is computationally simpler than the first one and proved to be powerful. The test problems considered for the performance comparison include the traditional set of test functions, system identification, neural network controller for cart-pole system, evolutionary design of a multi-agents playing a simplified soccer and nonlinear constrained optimization problems. Nine hybrid genetic algorithms are constructed using the proposed algorithms...
Advisors
Lee, Ju-Jangresearcher이주장researcher
Description
한국과학기술원 : 전기및전자공학과,
Publisher
한국과학기술원
Issue Date
1999
Identifier
150998/325007 / 000945395
Language
eng
Description

학위논문(박사) - 한국과학기술원 : 전기및전자공학과, 1999.2, [ vi, 108 p. ]

Keywords

Local search operator; Premature convergence; Hybrid genetic algorithm; Simulated annealing; 근사 담금질; 지역 탐색 연산자; 조기 집중 현상; 하이브리드 유전 알고리즘

URI
http://hdl.handle.net/10203/36497
Link
http://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=150998&flag=dissertation
Appears in Collection
EE-Theses_Ph.D.(박사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0