Effect of the solder conductive particles and substrate widths on the current carrying capability for flex-on-board (FOB) assembly

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 30
  • Download : 0
PurposeThe study aims to ascertain the influence of solder conductive particle types and substrate widths on the current carrying capability of flex-on-board (FOB) assemblies. By comparing Sn58Bi and SAC305 particles and varying substrate widths, the research sought to provide insights into the stability and performance of solder joints under different scenarios, particularly in high-power applications.Design/methodology/approachThe study used a comprehensive design/methodology, encompassing the investigation of solder conductive particle types (Sn58Bi and SAC305) and substrate widths on the current carrying capability of FOB assembly. Stable solder joints were obtained by manipulating the curing speed of anisotropic conductive films for both particle types. Various tests were conducted, including current carrying capability assessments under differing conditions.FindingsThe study revealed that larger substrate widths yielded higher current carrying capability due to increased contact area and reduced contact resistance. Notably, solder joints remained stable beyond the solder melting temperature due to encapsulation by cured epoxy resin. SAC305 solder joints exhibited superior current carrying capability over Sn58Bi in continuous high-voltage conditions. The results emphasized the stability of SAC305 solder joints and their suitability for robust interconnections in high-power FOB assemblies.Originality/valueThis study contributes by offering a comprehensive assessment of the impact of solder particle types and substrate widths on solder joint performance in FOB assemblies. The finding that SAC305 joints outperform Sn58Bi under continuous high-voltage conditions adds significant value. Moreover, the observation of stable solder joints beyond solder melting temperature due to resin encapsulation introduces a novel aspect to solder joint reliability. These insights provide valuable guidance for designing robust and high-performance interconnections in demanding applications.
Publisher
EMERALD GROUP PUBLISHING LTD
Issue Date
2024-10
Language
English
Article Type
Article
Citation

SOLDERING & SURFACE MOUNT TECHNOLOGY, v.36, no.5, pp.253 - 259

ISSN
0954-0911
DOI
10.1108/SSMT-08-2023-0048
URI
http://hdl.handle.net/10203/324020
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0