Quantum states generation and manipulation in a programmable silicon-photonic four-qubit system with high-fidelity and purity

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 38
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Jong-Mooko
dc.contributor.authorPark, Jihoko
dc.contributor.authorBang, Jeonghoko
dc.contributor.authorSohn, Young-Ikko
dc.contributor.authorBaldazzi, Alessioko
dc.contributor.authorSanna, Matteoko
dc.contributor.authorAzzini, Stefanoko
dc.contributor.authorPavesi, Lorenzoko
dc.date.accessioned2024-10-17T11:57:24Z-
dc.date.available2024-10-17T11:57:24Z-
dc.date.created2024-10-17-
dc.date.issued2024-07-
dc.identifier.citationAPL PHOTONICS, v.9, no.7-
dc.identifier.issn2378-0967-
dc.identifier.urihttp://hdl.handle.net/10203/323670-
dc.description.abstractWe present a programmable silicon photonic four-qubit integrated circuit for the generation and manipulation of diverse quantum states. The silicon photonic chip integrates photon-pair sources, pump-reducing filters, wavelength-division-multiplexing filters, Mach-Zehnder interferometer switches, and single-qubit arbitrary gates, enabling versatile state preparation and tomography. We measure Hong-Ou-Mandel interference with an impressive 98% visibility using four-photon coincidence, laying the foundation for high-purity qubits. Our analysis involves estimating the fidelity and purity of distinct quantum states through maximum-likelihood estimation applied to tomographic measurements. In our experimental results, we showcase the following achievements: a heralded single qubit achieving 98.2% fidelity and 98.3% purity, a Bell state reaching 95.2% fidelity and 94.8% purity, and a four-qubit system with two simultaneous Bell states exhibiting 87.4% fidelity and 84.6% purity. Finally, a four-qubit Greenberger-Horne-Zeilinger (GHZ) state demonstrates 85.4% fidelity and 81.7% purity. In addition, we certify the entanglement of the four-photon GHZ state through Bell's inequality violations and a negative entanglement witness. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license-
dc.languageEnglish-
dc.publisherAIP Publishing-
dc.titleQuantum states generation and manipulation in a programmable silicon-photonic four-qubit system with high-fidelity and purity-
dc.typeArticle-
dc.identifier.wosid001281659400003-
dc.identifier.scopusid2-s2.0-85198901803-
dc.type.rimsART-
dc.citation.volume9-
dc.citation.issue7-
dc.citation.publicationnameAPL PHOTONICS-
dc.identifier.doi10.1063/5.0207714-
dc.contributor.localauthorSohn, Young-Ik-
dc.contributor.nonIdAuthorLee, Jong-Moo-
dc.contributor.nonIdAuthorPark, Jiho-
dc.contributor.nonIdAuthorBang, Jeongho-
dc.contributor.nonIdAuthorBaldazzi, Alessio-
dc.contributor.nonIdAuthorSanna, Matteo-
dc.contributor.nonIdAuthorAzzini, Stefano-
dc.contributor.nonIdAuthorPavesi, Lorenzo-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusPAIR-
dc.subject.keywordPlusENTANGLEMENT-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0