Hydrogen spillover bridged dual nano-islands triggered by built-in electric field for efficient and robust alkaline hydrogen evolution at ampere-level current density

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 5
  • Download : 0
Employing the alkaline water electrolysis system to generate hydrogen holds great prospects but still poses significant challenges, particularly for the construction of hydrogen evolution reaction (HER) catalysts operating at ampere-level current density. Herein, the unique Ru and RuP2 dual nano-islands are deliberately implanted on N-doped carbon substrate (denoted as Ru-RuP2/NC), in which a built-in electric field (BEF) is spontaneously generated between Ru-RuP2 dual nano-islands driven by their work function difference. Experimental and theoretical results unveil that such constructed BEF could serve as the driving force for triggering fast hydrogen spillover process on bridged Ru-RuP2 dual nano-islands, which could invalidate the inhibitory effect of high hydrogen coverage at ampere-level current density, and synchronously speed up the water dissociation on Ru nano-islands and hydrogen adsorption/desorption on RuP2 nano-islands through hydrogen spillover process. As a result, the Ru-RuP2/NC affords an ultra-low overpotential of 218 mV to achieve 1.0 A center dot cm-2 along with the superior stability over 1000 h, holding the great promising prospect in practical applications at ampere-level current density. More importantly, this work is the first to advance the scientific understanding of the relationship between the constructed BEF and hydrogen spillover process, which could be enlightening for the rational design of the cost-effective alkaline HER catalysts at ampere-level current density.
Publisher
TSINGHUA UNIV PRESS
Issue Date
2024-06
Language
English
Article Type
Article
Citation

NANO RESEARCH, v.17, no.6

ISSN
1998-0124
DOI
10.1007/s12274-024-6520-x
URI
http://hdl.handle.net/10203/323183
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0