An Infinite-Width Analysis on the Jacobian-Regularised Training of a Neural Network

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 11
  • Download : 0
The recent theoretical analysis of deep neural networks in their infinite-width limits has deepened our understanding of initialisation, feature learning, and training of those networks, and brought new practical techniques for finding appropriate hyperparameters, learning network weights, and performing inference. In this paper, we broaden this line of research by showing that this infinite-width analysis can be extended to the Jacobian of a deep neural network. We show that a multilayer perceptron (MLP) and its Jacobian at initialisation jointly converge to a Gaussian process (GP) as the widths of the MLP's hidden layers go to infinity and characterise this GP. We also prove that in the infinite-width limit, the evolution of the MLP under the so-called robust training (i.e., training with a regulariser on the Jacobian) is described by a linear first-order ordinary differential equation that is determined by a variant of the Neural Tangent Kernel. We experimentally show the relevance of our theoretical claims to wide finite networks, and empirically analyse the properties of kernel regression solution to obtain an insight into Jacobian regularisation.
Publisher
International Conference on Machine Learning
Issue Date
2024-07-23
Language
English
Citation

The 41st International Conference on Machine Learning (ICML 2024), pp.24584 - 24657

URI
http://hdl.handle.net/10203/323099
Appears in Collection
CS-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0