<p>We prove that the regularity of the extremal function of a compact subset of a compact Kähler manifold is a local property, and that the continuity and Hölder continuity are equivalent to classical notions of the local <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L">
<mml:semantics>
<mml:mi>L</mml:mi>
<mml:annotation encoding="application/x-tex">L</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula>-regularity and the locally Hölder continuous property in pluripotential theory. As a consequence we give an effective characterization of the <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis script upper C Superscript alpha Baseline comma script upper C Superscript alpha prime Baseline right-parenthesis">
<mml:semantics>
<mml:mrow>
<mml:mo stretchy="false">(</mml:mo>
<mml:msup>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mi mathvariant="script">C</mml:mi>
</mml:mrow>
<mml:mi>α</mml:mi>
</mml:msup>
<mml:mo>,</mml:mo>
<mml:msup>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mi mathvariant="script">C</mml:mi>
</mml:mrow>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:msup>
<mml:mi>α</mml:mi>
<mml:mo>′</mml:mo>
</mml:msup>
</mml:mrow>
</mml:msup>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
<mml:annotation encoding="application/x-tex">(\mathscr {C}^\alpha , \mathscr {C}^{\alpha ’})</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula>-regularity of compact sets, the notion introduced by Dinh, Ma and Nguyen [Ann. Sci. Éc. Norm. Supér. (4) 50 (2017), pp. 545–578]. Using this criterion all compact fat subanalytic sets in <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R Superscript n">
<mml:semantics>
<mml:msup>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mi mathvariant="double-struck">R</mml:mi>
</mml:mrow>
<mml:mi>n</mml:mi>
</mml:msup>
<mml:annotation encoding="application/x-tex">\mathbb {R}^n</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> are shown to be regular in this sense.</p>