Lowering the Temperature of Solid Oxide Electrochemical Cells Using Triple-Doped Bismuth Oxides.

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 8
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorYu, Hyeongminko
dc.contributor.authorJeong, Incheolko
dc.contributor.authorJang, Seungsooko
dc.contributor.authorKim, Doyeubko
dc.contributor.authorIm, Ha-Niko
dc.contributor.authorLee, Chan-Wooko
dc.contributor.authorWachsman, Eric D.ko
dc.contributor.authorLee, Kang Taekko
dc.date.accessioned2024-09-05T07:00:38Z-
dc.date.available2024-09-05T07:00:38Z-
dc.date.created2023-11-27-
dc.date.issued2024-02-
dc.identifier.citationADVANCED MATERIALS, v.36, no.5-
dc.identifier.issn0935-9648-
dc.identifier.urihttp://hdl.handle.net/10203/322668-
dc.description.abstractDespite the great potential of solid oxide electrochemical cells (SOCs) as highly efficient energy conversion devices, the undesirable high operating temperature limits their wider applicability. Herein, a novel approach to developing high-performance low-temperature SOCs (LT-SOCs) is presented through the use of an Er, Y, and Zr triple-doped bismuth oxide (EYZB). This study demonstrates that EYZB exhibits > 147 times higher ionic conductivity of 0.44 S cm(-1) at 600 degrees C compared to commercial Y-stabilized zirconia electrolyte with excellent stability over 1000 h. By rationally incorporating EYZB in composite electrodes and bilayer electrolytes, the zirconia-based electrolyte LT-SOC achieves the unprecedentedly high performance of 3.45 and 2.02 W cm(-2) in the fuel cell mode and 2.08 and 0.95 A cm(-2) in the electrolysis cell mode at 700 degrees C and 600 degrees C, respectively. Further, a distinctive microstructural feature of EYZB that largely extends triple phase boundary at the interface is revealed through digital twinning. This work provides insights for developing high-performance LT-SOCs.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleLowering the Temperature of Solid Oxide Electrochemical Cells Using Triple-Doped Bismuth Oxides.-
dc.typeArticle-
dc.identifier.wosid001111400400001-
dc.identifier.scopusid2-s2.0-85178017324-
dc.type.rimsART-
dc.citation.volume36-
dc.citation.issue5-
dc.citation.publicationnameADVANCED MATERIALS-
dc.identifier.doi10.1002/adma.202306205-
dc.contributor.localauthorLee, Kang Taek-
dc.contributor.nonIdAuthorJeong, Incheol-
dc.contributor.nonIdAuthorKim, Doyeub-
dc.contributor.nonIdAuthorIm, Ha-Ni-
dc.contributor.nonIdAuthorLee, Chan-Woo-
dc.contributor.nonIdAuthorWachsman, Eric D.-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorelectrolysis cells-
dc.subject.keywordAuthorfirst-principles calculations-
dc.subject.keywordAuthorfuel cells-
dc.subject.keywordAuthorbismuth oxides-
dc.subject.keywordAuthordigital twinning-
dc.subject.keywordPlusOXYGEN REDUCTION REACTION-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusFUEL-CELL-
dc.subject.keywordPlusSURFACE MODIFICATION-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusKINETICS-
dc.subject.keywordPlusPR-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0