DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yu, Hyeongmin | ko |
dc.contributor.author | Jeong, Incheol | ko |
dc.contributor.author | Jang, Seungsoo | ko |
dc.contributor.author | Kim, Doyeub | ko |
dc.contributor.author | Im, Ha-Ni | ko |
dc.contributor.author | Lee, Chan-Woo | ko |
dc.contributor.author | Wachsman, Eric D. | ko |
dc.contributor.author | Lee, Kang Taek | ko |
dc.date.accessioned | 2024-09-05T07:00:38Z | - |
dc.date.available | 2024-09-05T07:00:38Z | - |
dc.date.created | 2023-11-27 | - |
dc.date.created | 2023-11-27 | - |
dc.date.created | 2023-11-27 | - |
dc.date.issued | 2024-02 | - |
dc.identifier.citation | ADVANCED MATERIALS, v.36, no.5 | - |
dc.identifier.issn | 0935-9648 | - |
dc.identifier.uri | http://hdl.handle.net/10203/322668 | - |
dc.description.abstract | Despite the great potential of solid oxide electrochemical cells (SOCs) as highly efficient energy conversion devices, the undesirable high operating temperature limits their wider applicability. Herein, a novel approach to developing high-performance low-temperature SOCs (LT-SOCs) is presented through the use of an Er, Y, and Zr triple-doped bismuth oxide (EYZB). This study demonstrates that EYZB exhibits > 147 times higher ionic conductivity of 0.44 S cm(-1) at 600 degrees C compared to commercial Y-stabilized zirconia electrolyte with excellent stability over 1000 h. By rationally incorporating EYZB in composite electrodes and bilayer electrolytes, the zirconia-based electrolyte LT-SOC achieves the unprecedentedly high performance of 3.45 and 2.02 W cm(-2) in the fuel cell mode and 2.08 and 0.95 A cm(-2) in the electrolysis cell mode at 700 degrees C and 600 degrees C, respectively. Further, a distinctive microstructural feature of EYZB that largely extends triple phase boundary at the interface is revealed through digital twinning. This work provides insights for developing high-performance LT-SOCs. | - |
dc.language | English | - |
dc.publisher | WILEY-V C H VERLAG GMBH | - |
dc.title | Lowering the Temperature of Solid Oxide Electrochemical Cells Using Triple-Doped Bismuth Oxides. | - |
dc.type | Article | - |
dc.identifier.wosid | 001111400400001 | - |
dc.identifier.scopusid | 2-s2.0-85178017324 | - |
dc.type.rims | ART | - |
dc.citation.volume | 36 | - |
dc.citation.issue | 5 | - |
dc.citation.publicationname | ADVANCED MATERIALS | - |
dc.identifier.doi | 10.1002/adma.202306205 | - |
dc.contributor.localauthor | Lee, Kang Taek | - |
dc.contributor.nonIdAuthor | Jeong, Incheol | - |
dc.contributor.nonIdAuthor | Kim, Doyeub | - |
dc.contributor.nonIdAuthor | Im, Ha-Ni | - |
dc.contributor.nonIdAuthor | Lee, Chan-Woo | - |
dc.contributor.nonIdAuthor | Wachsman, Eric D. | - |
dc.description.isOpenAccess | N | - |
dc.type.journalArticle | Article | - |
dc.subject.keywordAuthor | electrolysis cells | - |
dc.subject.keywordAuthor | first-principles calculations | - |
dc.subject.keywordAuthor | fuel cells | - |
dc.subject.keywordAuthor | bismuth oxides | - |
dc.subject.keywordAuthor | digital twinning | - |
dc.subject.keywordPlus | OXYGEN REDUCTION REACTION | - |
dc.subject.keywordPlus | HIGH-PERFORMANCE | - |
dc.subject.keywordPlus | FUEL-CELL | - |
dc.subject.keywordPlus | SURFACE MODIFICATION | - |
dc.subject.keywordPlus | ELECTROLYTE | - |
dc.subject.keywordPlus | STABILITY | - |
dc.subject.keywordPlus | CATHODE | - |
dc.subject.keywordPlus | CONDUCTIVITY | - |
dc.subject.keywordPlus | KINETICS | - |
dc.subject.keywordPlus | PR | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.