Novel Perovskite Oxide Hybrid Nanofibers Embedded with Nanocatalysts for Highly Efficient and Durable Electrodes in Direct CO2 Electrolysis

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 87
  • Download : 0
The unique characteristics of nanofibers in rational electrode design enable effective utilization and maximizing material properties for achieving highly efficient and sustainable CO2 reduction reactions (CO(2)RRs) in solid oxide electrolysis cells (SOECs). However, practical application of nanofiber-based electrodes faces challenges in establishing sufficient interfacial contact and adhesion with the dense electrolyte. To tackle this challenge, a novel hybrid nanofiber electrode, La0.6Sr0.4Co0.15Fe0.8Pd0.05O3-delta (H-LSCFP), is developed by strategically incorporating low aspect ratio crushed LSCFP nanofibers into the excess porous interspace of a high aspect ratio LSCFP nanofiber framework synthesized via electrospinning technique. After consecutive treatment in 100% H-2 and CO2 at 700 degrees C, LSCFP nanofibers form a perovskite phase with in situ exsolved Co metal nanocatalysts and a high concentration of oxygen species on the surface, enhancing CO2 adsorption. The SOEC with the H-LSCFP electrode yielded an outstanding current density of 2.2 A cm(-2) in CO2 at 800 degrees C and 1.5 V, setting a new benchmark among reported nanofiber-based electrodes. Digital twinning of the H-LSCFP reveals improved contact adhesion and increased reaction sites for CO2RR. The present work demonstrates a highly catalytically active and robust nanofiber-based fuel electrode with a hybrid structure, paving the way for further advancements and nanofiber applications in CO2-SOECs.
Publisher
SHANGHAI JIAO TONG UNIV PRESS
Issue Date
2024-12
Language
English
Article Type
Article
Citation

NANO-MICRO LETTERS, v.16, no.1

ISSN
2311-6706
DOI
10.1007/s40820-023-01298-w
URI
http://hdl.handle.net/10203/322446
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0