Reactive oxygen species (ROS) that are overproduced in certain tumors can be considered an indicator of oxidative stress levels in the tissue. Here, we report a magnetic resonance imaging (MRI)-based probe capable of detecting ROS levels in the tumor microenvironment (TME) using ROS-responsive manganese ion (Mn2+)chelated, biotinylated bilirubin nanoparticles (Mn@bt-BRNPs). These nanoparticles are disrupted in the presence of ROS, resulting in the release of free Mn2+, which induces T1-weighted MRI signal enhancement. Mn@BRNPs show more rapid and greater MRI signal enhancement in high ROS-producing A549 lung carcinoma cells compared with low ROS-producing DU145 prostate cancer cells. A pseudo three-compartment model devised for the ROS-reactive MRI probe enables mapping of the distribution and concentration of ROS within the tumor. Furthermore, doxorubicin-loaded, cancer-targeting ligand biotin-conjugated Dox/Mn@bt-BRNPs show considerable accumulation in A549 tumors and also effectively inhibit tumor growth without causing body weight loss, suggesting their usefulness as a new theranostic agent. Collectively, these findings suggest that Mn@bt-BRNPs could be used as an imaging probe capable of detecting ROS levels and monitoring drug delivery in the TME with potential applicability to other inflammatory diseases.