Diffusion Control on the Van der Waals Surface of Monolayers for Uniform Bi-Layer MoS2 Growth

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 13
  • Download : 0
2D MoS2 has gained attention for the post-silicon material owing to its atomically thin nature and dangling bond-free surface. The bi-layer MoS2 is considered a promising material for electronic devices due to its better electrical properties than monolayer MoS2. However, the uniform growth of bi-layer MoS2 is still challenging. Herein, the uniform growth of bi-layer MoS2 is demonstrated using gas-phase alkali metal-assisted metal-organic chemical vapor deposition (GAA-MOCVD). Thanks to enhanced metal reactant diffusion length in GAA-MOCVD, the uniform growth of bi-layer MoS2 film is achieved even at fast nucleation kinetics for a shorter growth time compared to previously reported MOCVD. The bi-layer MoS2 field-effect transistors (FETs) show superior electrical properties such as sheet conductance and electron mobility than monolayer MoS2 FETs. The electron mobility of bi-layer MoS2 FETs with bismuth contacts reaches a maximum of 92.35 cm(2) V-1 s(-1). Using the partially grown epitaxial bi-layer (PGEB) MoS2, it is demonstrated that a photodetector showed a near-infrared photoresponse with a low dark current that is advantageous for both monolayer and bi-layer applications. The potential expansion of the growth technique to layer-by-layer growth can result in boosted performance across a wide spectrum of electronic and optoelectronic devices employing MoS2.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2024-06
Language
English
Citation

ADVANCED FUNCTIONAL MATERIALS, v.34, no.23

ISSN
1616-301X
URI
http://hdl.handle.net/10203/319863
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0