Proton exchange membrane water electrolysis (PEMWE) stands out as the most promising and eco-friendly technology for directly converting renewable energy into hydrogen. A critical element within a PEMWE cell is the porous transport layer (PTL), typically constructed from Ti to withstand the rigorous conditions of water electrolysis. Herein, we present a cost-effective and viable fabrication process for Ti-PTLs, utilizing tape -casting method in combination with a lamination-roll calendering procedure, facilitating precise thickness control. By systematical fine-tuning the debinding conditions, we obtained a phase-pure Ti-PTL endowed with a highlyinterconnected pore structure. A comprehensive analysis of digitally twinned Ti-PTL, constructed through a state -of -the -art three-dimensional (3D) reconstruction process, reveals a remarkable uniformity in the open pore structures across Ti-PTLs of varying thicknesses, highlighting their considerable practical potential. Furthermore, the electrochemical performance of PEMWE cells using our Ti-PTLs surpassed that of the benchmark commercial Ti-PTL, demonstrating the significant promise of our tape -casting process followed by lamination-roll calendering procedure in practical Ti-PTL fabrication.