Flash-Thermal Shock Synthesis of Single Atoms in Ambient Air

Cited 7 time in webofscience Cited 0 time in scopus
  • Hit : 172
  • Download : 0
Single-atom catalysts feature interesting catalytic activity toward applications that rely on surface reactions such as electrochemical energy storage, catalysis, and gas sensors. However, conventional synthetic approaches for such catalysts require extended periods of high-temperature annealing in vacuum systems, limiting their throughput and increasing their production cost. Herein, we report an ultrafast flash-thermal shock (FTS)-induced annealing technique (temperature > 2850 °C, <10 ms duration, and ramping/cooling rates of ∼105 K/s) that operates in an ambient-air environment to prepare single-atom-stabilized N-doped graphene. Melamine is utilized as an N-doping source to provide thermodynamically favorable metal-nitrogen bonding sites, resulting in a uniform and high-density atomic distribution of single metal atoms. To demonstrate the practical utility of the single-atom-stabilized N-doped graphene produced by the FTS method, we showcased their chemiresistive gas sensing capabilities and electrocatalytic activities. Overall, the air-ambient, ultrafast, and versatile (e.g., Co, Ni, Pt, and Co-Ni dual metal) FTS method provides a general route for high-throughput, large area, and vacuum-free manufacturing of single-atom catalysts.
Publisher
AMER CHEMICAL SOC
Issue Date
2023-12
Language
English
Article Type
Article
Citation

ACS NANO, v.17, no.23, pp.23347 - 23358

ISSN
1936-0851
DOI
10.1021/acsnano.3c02968
URI
http://hdl.handle.net/10203/317257
Appears in Collection
EE-Journal Papers(저널논문)MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 7 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0