Multi-View Masked World Models for Visual Robotic Manipulation

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 35
  • Download : 0
Visual robotic manipulation research and applications often use multiple cameras, or views, to better perceive the world. How else can we utilize the richness of multi-view data? In this paper, we investigate how to learn good representations with multi-view data and utilize them for visual robotic manipulation. Specifically, we train a multi-view masked autoencoder which reconstructs pixels of randomly masked viewpoints and then learn a world model operating on the representations from the autoencoder. We demonstrate the effectiveness of our method in a range of scenarios, including multi-view control and single-view control with auxiliary cameras for representation learning. We also show that the multi-view masked autoencoder trained with multiple randomized viewpoints enables training a policy with strong viewpoint randomization and transferring the policy to solve real-robot tasks without camera calibration and an adaptation procedure. Video demonstrations are available at: https://sites.google.com/view/mv-mwm.
Publisher
International Machine Learning Society (IMLS)
Issue Date
2023-07-25
Language
English
Citation

40th International Conference on Machine Learning, ICML 2023

URI
http://hdl.handle.net/10203/316035
Appears in Collection
AI-Conference Papers(학술대회논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0