Thermal radiation at the nanoscale and applications

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 73
  • Download : 0
There has been a paradigm shift from the well-known laws of thermal radiation derived over a century ago, valid only when the length scales involved are much larger than the thermal wavelength (around 10 μm at room temperature), to a general framework known as fluctuational electrodynamics that allows calculations of radiative heat transfer for arbitrary sizes and length scales. Near-field radiative heat transfer and thermal emission in systems of sub-wavelength size can exhibit super-Planckian behavior, i.e., flux rates several orders of magnitude larger than that predicted by the Stefan–Boltzmann (or blackbody) limit. These effects can be combined with novel materials, e.g., low-dimensional or topological systems, to yield even larger modifications and spectral and/or directional selectivity. We introduce briefly the context and the main steps that have led to the current boom of ideas and applications. We then discuss the original and impactful works gathered in the associated Special Topic collection, which provides an overview of the flourishing field of nanoscale thermal radiation.
Publisher
AIP Publishing
Issue Date
2023-11
Language
English
Article Type
Editorial Material
Citation

APPLIED PHYSICS LETTERS, v.123, no.22

ISSN
0003-6951
DOI
10.1063/5.0186406
URI
http://hdl.handle.net/10203/315635
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0