Formability classifier for a TV back panel part with machine learning

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 49
  • Download : 0
This study proposes a machine learning-based methodology for evaluating the formability of sheet metals. An XGBoost (eXtreme Gradient Boosting) machine learning classifier is developed to classify the formability of the TV back panel based on the forming limit curve (FLC). The input to the XGBoost model is the blank thickness and cross-sectional dimensions of the screw holes, AC (Alternating Current), and AV (Audio Visual) terminals on the TV back panel. The training dataset is generated using finite element simulations and verified through experimental strain measurements. The trained classification model maps the panel geometry to one of three formability classes: safe, marginal, and cracked. Strain values below the FLC are classified as safe, those within 5% margin of the FLC are classified as marginal, and those above are classified as cracked. The statistical accuracy and performance of the classifier are quantified using the confusion matrix and multiclass Receiver Operating Characteristic (ROC) curve, respectively. Furthermore, in order to demonstrate the practical viability of the proposed methodology, the punch radius of the screw holes is optimized using Brent's method in a Java environment. Remarkably, the optimization process is completed swiftly, taking only 3.11 s. Hence, the results demonstrate that formability for a new design can be improved based on the predictions of the machine learning model.
Publisher
SPRINGER FRANCE
Issue Date
2023-11
Language
English
Article Type
Article
Citation

INTERNATIONAL JOURNAL OF MATERIAL FORMING, v.16, no.6

ISSN
1960-6206
DOI
10.1007/s12289-023-01791-y
URI
http://hdl.handle.net/10203/315241
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0