A novel sampling method for adaptive gradient-enhanced Kriging

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 206
  • Download : 0
This paper presents a novel infill-sampling strategy for adaptive gradient-enhanced Kriging (AGEK) that delivers superior results on a limited budget. The primary innovation of this method is the adaptive use of gradient information, blurring the line between Kriging and gradient-enhanced Kriging. To construct a flexible AGEK model that automatically determines whether to incorporate gradients, our proposed method unfolds in three stages: (1) primary infill-sampling, (2) secondary infill-sampling, and (3) modeling time stages. In the first stage, the primary infill-sampling technique identifies potential sample point sites. In the second stage, the secondary infill-sampling process decides whether to obtain only the response or both the response and gradient at the selected sample point. During this stage, a newly defined pseudo expected improvement reduction, pseudo integrated uncertainty reduction, and weight functions are incorporated into the secondary infill-sampling criteria. In the third stage, we propose a strategy to manage instances where training time becomes overly demanding. Benchmark test results validate the excellent performance of the proposed method. Finally, in application to an engineering problem, our method outperforms conventional approaches by producing more accurate results within a limited computational budget.
Publisher
ELSEVIER SCIENCE SA
Issue Date
2024-01
Language
English
Article Type
Article
Citation

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, v.418

ISSN
0045-7825
DOI
10.1016/j.cma.2023.116456
URI
http://hdl.handle.net/10203/313599
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0