On the consistent choice of effective permittivity and conductivity for modeling graphene

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 118
  • Download : 0
Graphene has transformed the fields of plasmonics and photonics, and become an indispensable component for devices operating in the terahertz to mid-infrared range. Here, for instance, graphene surface plasmons can be excited, and their extreme interfacial confinement makes them vastly effective for sensing and detection. The rapid, robust, and accurate numerical simulation of optical devices featuring graphene is of paramount importance and many groups appeal to Black-Box Finite Element solvers. While accurate, these are quite computationally expensive for problems with simplifying geometrical features such as multiple homogeneous layers, which can be recast in terms of interfacial (rather than volumetric) unknowns. In either case, an important modeling consideration is whether to treat the graphene as a material of small (but non-zero) thickness with an effective permittivity, or as a vanishingly thin sheet of current with an effective conductivity. In this contribution we ponder the correct relationship between the effective conductivity and permittivity of graphene, and propose a new relation which is based upon a concrete mathematical calculation that appears to be missing in the literature. We then test our new model both in the case in which the interface deformation is non-trivial, and when there are two layers of graphene with non-flat interfacial deformation.
Publisher
OPTICAL SOC AMER
Issue Date
2021-10
Language
English
Article Type
Article
Citation

JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, v.38, no.10

ISSN
1084-7529
DOI
10.1364/JOSAA.430088
URI
http://hdl.handle.net/10203/311015
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0