Unsupervised anomaly detection of the gas turbine operation via convolutional auto-encoder

Cited 10 time in webofscience Cited 0 time in scopus
  • Hit : 51
  • Download : 0
This paper proposes a combination of convolutional neural network and auto-encoder (CAE) for unsupervised anomaly detection of industrial gas turbines. Autonomous monitoring systems protect the gas turbines, with the settings unchanged in their lifetime. Those systems can not detect any abnormal operation patterns which potentially risk the equipment after long-term exposure. Recently, machine learning and deep learning models are applied for industries to detect those anomalies under the nominal working range. However, for gas turbine protection, not much deep learning (DL) models are introduced. The proposed CAE detects irregular signals in unsupervised learning by combining a convolutional neural network (CNN) and auto-encoder (AE). CNN exponentially reduces the computational cost and decrease the amount of training data, by its extraction capabilities of essential features in spatial input data. A CAE identifies the anomalies by adapting characteristics of an AE, which identifies any errors larger than usual pre-trained, reconstructed errors. Using the Keras library, we developed an AE structure in one-dimensional convolution layer networks. We used actual plant operation data set for performance evaluation with conventional machine learning (ML) models. Compared to the isolation forest (iforest), k-means clustering (k-means), and one-class support vector machine (OCSVM), our model accurately predicts unusual signal patterns identified in the actual operation than conventional ML models.
Publisher
Prognostics and Health Management Society
Issue Date
2020-06
Language
English
Citation

2020 IEEE International Conference on Prognostics and Health Management, ICPHM 2020

ISSN
2325-0178
DOI
10.1109/ICPHM49022.2020.9187054
URI
http://hdl.handle.net/10203/310697
Appears in Collection
AI-Conference Papers(학술대회논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0