DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cai, Chen | ko |
dc.contributor.author | Kim, Woojin | ko |
dc.contributor.author | Memoli, Facundo | ko |
dc.contributor.author | Wang, Yusu | ko |
dc.date.accessioned | 2023-07-06T02:00:19Z | - |
dc.date.available | 2023-07-06T02:00:19Z | - |
dc.date.created | 2023-07-06 | - |
dc.date.created | 2023-07-06 | - |
dc.date.created | 2023-07-06 | - |
dc.date.created | 2023-07-06 | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, v.5, no.3, pp.417 - 454 | - |
dc.identifier.issn | 2470-6566 | - |
dc.identifier.uri | http://hdl.handle.net/10203/310337 | - |
dc.description.abstract | An augmented metric space is a metric space (X, d(x)) equipped with a function f(x) : X -> R This type of data arises commonly in practice, e.g., a point cloud X in R-D where each point x is an element of X has a density function value fx(x) associated to it. An augmented metric space (X, dx, fx) naturally gives rise to a 2-parameter filtration K. However, the resulting 2-parameter persistent homology H.(K) could still be of wild representation type and may not have simple indecomposables. In this paper, motivated by the elder-rule for the zeroth homology of 1-parameter filtration, we propose a barcode-like summary, called the elder-rule-staircode, as a way to encode H-0(K). Specifically, if n = vertical bar X vertical bar the elder-rule-staircode consists of n number of staircase-like blocks in the plane. We show that if H-0(K) is interval decomposable, then the barcode of H-0(K) is equal to the elder-rule-staircode. Furthermore, regardless of the interval decomposability, the fibered barcode, the dimension function (a.k.a. the Hilbert function), and the graded Betti numbers of H-0(K) can all be efficiently computed once the elder-rule-staircode is given. Finally, we develop and implement an efficient algorithm to compute the elder-rule-staircode in O(n(2) log n) time, which can be improved to O (n(2) alpha(n)) if X is from a fixed dimensional Euclidean space R-D, where alpha(n) is the inverse Ackermann function. | - |
dc.language | English | - |
dc.publisher | SIAM PUBLICATIONS | - |
dc.title | Elder-Rule-Staircodes for Augmented Metric Spaces | - |
dc.type | Article | - |
dc.identifier.wosid | 000704322700001 | - |
dc.identifier.scopusid | 2-s2.0-85113407598 | - |
dc.type.rims | ART | - |
dc.citation.volume | 5 | - |
dc.citation.issue | 3 | - |
dc.citation.beginningpage | 417 | - |
dc.citation.endingpage | 454 | - |
dc.citation.publicationname | SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY | - |
dc.identifier.doi | 10.1137/20M1353605 | - |
dc.contributor.localauthor | Kim, Woojin | - |
dc.contributor.nonIdAuthor | Cai, Chen | - |
dc.contributor.nonIdAuthor | Memoli, Facundo | - |
dc.contributor.nonIdAuthor | Wang, Yusu | - |
dc.description.isOpenAccess | N | - |
dc.type.journalArticle | Article | - |
dc.subject.keywordAuthor | multiparameter persistent homology | - |
dc.subject.keywordAuthor | hierarchical clustering | - |
dc.subject.keywordAuthor | persistence diagram | - |
dc.subject.keywordAuthor | elder-rule | - |
dc.subject.keywordPlus | PERSISTENCE | - |
dc.subject.keywordPlus | STABILITY | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.