Elder-Rule-Staircodes for Augmented Metric Spaces

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 111
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorCai, Chenko
dc.contributor.authorKim, Woojinko
dc.contributor.authorMemoli, Facundoko
dc.contributor.authorWang, Yusuko
dc.date.accessioned2023-07-06T02:00:19Z-
dc.date.available2023-07-06T02:00:19Z-
dc.date.created2023-07-06-
dc.date.created2023-07-06-
dc.date.created2023-07-06-
dc.date.created2023-07-06-
dc.date.issued2021-
dc.identifier.citationSIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, v.5, no.3, pp.417 - 454-
dc.identifier.issn2470-6566-
dc.identifier.urihttp://hdl.handle.net/10203/310337-
dc.description.abstractAn augmented metric space is a metric space (X, d(x)) equipped with a function f(x) : X -> R This type of data arises commonly in practice, e.g., a point cloud X in R-D where each point x is an element of X has a density function value fx(x) associated to it. An augmented metric space (X, dx, fx) naturally gives rise to a 2-parameter filtration K. However, the resulting 2-parameter persistent homology H.(K) could still be of wild representation type and may not have simple indecomposables. In this paper, motivated by the elder-rule for the zeroth homology of 1-parameter filtration, we propose a barcode-like summary, called the elder-rule-staircode, as a way to encode H-0(K). Specifically, if n = vertical bar X vertical bar the elder-rule-staircode consists of n number of staircase-like blocks in the plane. We show that if H-0(K) is interval decomposable, then the barcode of H-0(K) is equal to the elder-rule-staircode. Furthermore, regardless of the interval decomposability, the fibered barcode, the dimension function (a.k.a. the Hilbert function), and the graded Betti numbers of H-0(K) can all be efficiently computed once the elder-rule-staircode is given. Finally, we develop and implement an efficient algorithm to compute the elder-rule-staircode in O(n(2) log n) time, which can be improved to O (n(2) alpha(n)) if X is from a fixed dimensional Euclidean space R-D, where alpha(n) is the inverse Ackermann function.-
dc.languageEnglish-
dc.publisherSIAM PUBLICATIONS-
dc.titleElder-Rule-Staircodes for Augmented Metric Spaces-
dc.typeArticle-
dc.identifier.wosid000704322700001-
dc.identifier.scopusid2-s2.0-85113407598-
dc.type.rimsART-
dc.citation.volume5-
dc.citation.issue3-
dc.citation.beginningpage417-
dc.citation.endingpage454-
dc.citation.publicationnameSIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY-
dc.identifier.doi10.1137/20M1353605-
dc.contributor.localauthorKim, Woojin-
dc.contributor.nonIdAuthorCai, Chen-
dc.contributor.nonIdAuthorMemoli, Facundo-
dc.contributor.nonIdAuthorWang, Yusu-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthormultiparameter persistent homology-
dc.subject.keywordAuthorhierarchical clustering-
dc.subject.keywordAuthorpersistence diagram-
dc.subject.keywordAuthorelder-rule-
dc.subject.keywordPlusPERSISTENCE-
dc.subject.keywordPlusSTABILITY-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0