This study deals with the calibration of Bauschinger effect on DP980 and TRIP1180 sheet metals with three cyclic material tests: tension/compression, shear/reverse shear, and bending/reverse bending. An in-plane simple shear jig, in which the grip bolts are evenly positioned surrounding a specimen to prevent the specimen from slipping, is developed for shear/reverse shear test. A new concept of electronic bending/reverse bending tester, which operates on brushless DC motor and can be speed-controlled, is designed for bending/reverse bending tests. In the newly devised bending/reverse bending test, the gaps between specimen and grip make the specimen deform like pure bending with only four points touching. The material parameters of Yoshida-Uemori (YU) model are determined from tension/compression, shear/reverse shear, and bending/reverse bending tests. The calibrated material properties for the Bauschinger effect are verified with the application for U-draw bending test. The springback prediction results based on the three loading/reverse loading tests are comparatively evaluated with various blank holding forces.