X-MAS: Extremely Large-Scale Multi-Modal Sensor Dataset for Outdoor Surveillance in Real Environments

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 265
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorNoh, DongKiko
dc.contributor.authorSung, Changkiko
dc.contributor.authorUhm, Teayoungko
dc.contributor.authorLee, WooJuko
dc.contributor.authorLim, Hyungtaeko
dc.contributor.authorChoi, Jaeseokko
dc.contributor.authorLee, Kyuewangko
dc.contributor.authorHong, Dasolko
dc.contributor.authorUm, Daehoko
dc.contributor.authorChung, Inseopko
dc.contributor.authorShin, Hochulko
dc.contributor.authorKim, MinJungko
dc.contributor.authorKim, Hyoung-Rockko
dc.contributor.authorBaek, SeungMinko
dc.contributor.authorMyung, Hyunko
dc.date.accessioned2023-01-28T03:00:42Z-
dc.date.available2023-01-28T03:00:42Z-
dc.date.created2023-01-20-
dc.date.created2023-01-20-
dc.date.created2023-01-20-
dc.date.created2023-01-20-
dc.date.issued2023-02-
dc.identifier.citationIEEE ROBOTICS AND AUTOMATION LETTERS, v.8, no.2, pp.1093 - 1100-
dc.identifier.issn2377-3766-
dc.identifier.urihttp://hdl.handle.net/10203/304759-
dc.description.abstractIn robotics and computer vision communities, extensive studies have been widely conducted regarding surveillance tasks, including human detection, tracking, and motion recognition with a camera. Additionally, deep learning algorithms are widely utilized in the aforementioned tasks as in other computer vision tasks. Existing public datasets are insufficient to develop learning-based methods that handle various surveillance for outdoor and extreme situations such as harsh weather and low illuminance conditions. Therefore, we introduce a new large-scale outdoor surveillance dataset named e X tremely large-scale M ulti-mod A l S ensor dataset ( X-MAS ) containing more than 500,000 image pairs and the first-person view data annotated by well-trained annotators. Moreover, a single pair contains multi-modal data (e.g. an IR image, an RGB image, a thermal image, a depth image, and a LiDAR scan). This is the first large-scale first-person view outdoor multi-modal dataset focusing on surveillance tasks to the best of our knowledge. We present an overview of the proposed dataset with statistics and present methods of exploiting our dataset with deep learning-based algorithms.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleX-MAS: Extremely Large-Scale Multi-Modal Sensor Dataset for Outdoor Surveillance in Real Environments-
dc.typeArticle-
dc.identifier.wosid000920481000003-
dc.identifier.scopusid2-s2.0-85147276509-
dc.type.rimsART-
dc.citation.volume8-
dc.citation.issue2-
dc.citation.beginningpage1093-
dc.citation.endingpage1100-
dc.citation.publicationnameIEEE ROBOTICS AND AUTOMATION LETTERS-
dc.identifier.doi10.1109/lra.2023.3236569-
dc.contributor.localauthorMyung, Hyun-
dc.contributor.nonIdAuthorUhm, Teayoung-
dc.contributor.nonIdAuthorChoi, Jaeseok-
dc.contributor.nonIdAuthorLee, Kyuewang-
dc.contributor.nonIdAuthorHong, Dasol-
dc.contributor.nonIdAuthorUm, Daeho-
dc.contributor.nonIdAuthorChung, Inseop-
dc.contributor.nonIdAuthorShin, Hochul-
dc.contributor.nonIdAuthorKim, Hyoung-Rock-
dc.contributor.nonIdAuthorBaek, SeungMin-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorSurveillance-
dc.subject.keywordAuthorRobots-
dc.subject.keywordAuthorTask analysis-
dc.subject.keywordAuthorCameras-
dc.subject.keywordAuthorVideos-
dc.subject.keywordAuthorMultimodal sensors-
dc.subject.keywordAuthorRobot vision systems-
dc.subject.keywordAuthorDataset-
dc.subject.keywordAuthorfield robot-
dc.subject.keywordAuthormulti-modal perception-
dc.subject.keywordAuthorsurveillance robot-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0