Nanoscale Visualization of the Electron Conduction Channel in the SiO/Graphite Composite Anode

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 121
  • Download : 0
Conductive atomic force microscopy (C-AFM) is widely used to determine the electronic conductivity of a sample surface with nanoscale spatial resolution. However, the origin of possible artifacts has not been widely researched, hindering the accurate and reliable interpretation of C-AFM imaging results. Herein, artifact-free C-AFM is used to observe the electron conduction channels in Si-based composite anodes. The origin of a typical C-AFM artifact induced by surface morphology is investigated using a relevant statistical method that enables visualization of the contribution of artifacts in each C-AFM image. The artifact is suppressed by polishing the sample surface using a cooling cross-section polisher, which is confirmed by Pearson correlation analysis. The artifact-free C-AFM image was used to compare the current signals (before and after cycling) from two different composite anodes comprising single-walled carbon nanotubes (SWCNTs) and carbon black as conductive additives. The relationship between the electrical degradation and morphological evolution of the active materials depending on the conductive additive is discussed to explain the improved electrical and electrochemical properties of the electrode containing SWCNTs.
Publisher
AMER CHEMICAL SOC
Issue Date
2022-06
Language
English
Article Type
Article
Citation

ACS APPLIED MATERIALS & INTERFACES, v.14, no.27, pp.30639 - 30648

ISSN
1944-8244
DOI
10.1021/acsami.2c01460
URI
http://hdl.handle.net/10203/303182
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0