Monocular Pose Estimation of an Uncooperative Spacecraft Using Convexity Defect Features

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 145
  • Download : 0
Spacecraft relative pose estimation for an uncooperative spacecraft is challenging because the target spacecraft neither provides sensor information to a chaser spacecraft nor contains markers that assist vision-based navigation. Moreover, the chaser does not have prior pose estimates when initiating the pose estimation. This paper proposes a new monocular pose estimation algorithm that addresses these issues in pose initialization situations for a known but uncooperative target spacecraft. The proposed algorithm finds convexity defect features from a target image and uses them as cues for matching feature points on the image to the points on the known target model. Based on this novel method for model matching, it estimates a pose by solving the PnP problem. Pose estimation simulations are carried out in three test scenarios, and each assesses the estimation accuracy and initialization performance by varying relative attitudes and distances. The simulation results show that the algorithm can estimate the poses of spacecraft models when a solar panel length and the number of solar panels are changed. Furthermore, a scenario considering the surface property of the spacecraft emphasizes that robust feature detection is essential for accurate pose estimation. This algorithm can be used for proximity operations with a known but uncooperative target spacecraft. Specifically, one of the main applications is relative navigation for on-orbit servicing.
Publisher
MDPI
Issue Date
2022-11
Language
English
Article Type
Article
Citation

SENSORS, v.22, no.21

ISSN
1424-8220
DOI
10.3390/s22218541
URI
http://hdl.handle.net/10203/301140
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0