Linear RGB-D SLAM for Structured Environments

Cited 10 time in webofscience Cited 0 time in scopus
  • Hit : 191
  • Download : 0
We propose a new linear RGB-D simultaneous localization and mapping (SLAM) formulation by utilizing planar features of the structured environments. The key idea is to understand a given structured scene and exploit its structural regularities such as the Manhattan world. This understanding allows us to decouple the camera rotation by tracking structural regularities, which makes SLAM problems free from being highly nonlinear. Additionally, it provides a simple yet effective cue for representing planar features, which leads to a linear SLAM formulation. Given an accurate camera rotation, we jointly estimate the camera translation and planar landmarks in the global planar map using a linear Kalman filter. Our linear SLAM method, called L-SLAM, can understand not only the Manhattan world but the more general scenario of the Atlanta world, which consists of a vertical direction and a set of horizontal directions orthogonal to the vertical direction. To this end, we introduce a novel tracking-by-detection scheme that infers the underlying scene structure by Atlanta representation. With efficient Atlanta representation, we formulate a unified linear SLAM framework for structured environments. We evaluate L-SLAM on a synthetic dataset and RGB-D benchmarks, demonstrating comparable performance to other state-of-the-art SLAM methods without using expensive nonlinear optimization. We assess the accuracy of L-SLAM on a practical application of augmented reality.
Publisher
IEEE COMPUTER SOC
Issue Date
2022-11
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, v.44, no.11, pp.8403 - 8419

ISSN
0162-8828
DOI
10.1109/TPAMI.2021.3106820
URI
http://hdl.handle.net/10203/299196
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0