Layered barium cobaltite structure materials containing perovskite and CdI2-based layers for reversible solid oxide cells with exceptionally high performance

Cited 16 time in webofscience Cited 0 time in scopus
  • Hit : 974
  • Download : 0
To improve the sluggish kinetics of oxygen electrode reactions in reversible solid oxide cells (RSOCs), a novel layered structure Nd0.1Ca0.1Ba1.8Co9O14 (NCBCO) having alternating perovskite and CdI2-based layers is introduced in this field for the first time as a highly active and durable catalyst. Maximum power densities of NCBCO with zirconia-based cells are high, reaching 2.6 W.cm(-2) at 800 ? in solid oxide fuel cell (SOFC) mode. Under a solid oxide electrolysis cell (SOEC) mode, the zirconia-based cell with NCBCO achieves an outstanding current density of -4.36 A.cm(-2) at 800 ? with an applied voltage of 1.6 V, surpassing many results of the reported oxygen evolution reaction catalysts with the high activities. Furthermore, RSOCs with NCBCO presents no degradation over entire 400 h in SOFC and SOEC modes. Such outstanding electrocatalytic performances of NCBCO for oxygen electrode reactions might be attributed to its high oxygen vacancy content with a high electrical conductivity. This is confirmed by X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed desorption of oxygen, and electron paramagnetic resonance measurements. These results validate that the layered structure NCBCO can be a potential oxygen electrode material for RSOCs.
Publisher
ELSEVIER SCIENCE SA
Issue Date
2023-01
Language
English
Article Type
Article
Citation

CHEMICAL ENGINEERING JOURNAL, v.451

ISSN
1385-8947
DOI
10.1016/j.cej.2022.138954
URI
http://hdl.handle.net/10203/298816
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 16 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0