2.5D Laser-Cutting-Based Customized Fabrication of Long-Term Wearable Textile sEMG Sensor: From Design to Intention Recognition

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 1086
  • Download : 0
The surface electromyography(sEMG) sensor is widely used as a human-machine interface in wearable systems. Although numerous studies have applied compact sEMG systems to wearable devices, these are inconvenient and not suitable for long-term use. Herein, we introduce a 2.5D laser cutting method to accelerate customized sensor fabrication from design to production. The customized textile-based sensor provides high wearing comfort and improves the sensor signal quality through stable contact. We implemented a foam-filled electrode to ensure solid skin-electrode contact even during perspiration and varying pressure conditions, and evaluated its performance experimentally. The sensor-integrated garments one for the leg and one for the arm were fabricated with the proposed design method for further evaluation and application. Consistent sensor performance was demonstrated during squats and running (i.e., perspiration) while wearing the leg sensor. The sensor sleeve for the arm was integrated with intention recognition algorithms for hand gesture recognition. A Convolutional Neural Network (CNN) architecture was employed to classify 28 hand gestures, including finger and wrist motions. The average classification accuracy of five subjects achieved 93.21%, and further increased to 94.34% after perspiration.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2022-10
Language
English
Article Type
Article
Citation

IEEE ROBOTICS AND AUTOMATION LETTERS, v.7, no.4, pp.10367 - 10374

ISSN
2377-3766
DOI
10.1109/LRA.2022.3190620
URI
http://hdl.handle.net/10203/298093
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0