Ultrafast interfacial carrier dynamics and persistent topological surface states of Bi2Se3 in heterojunctions with VSe2

Cited 8 time in webofscience Cited 0 time in scopus
  • Hit : 179
  • Download : 0
Vanadium diselenide (VSe2) has recently been highlighted as an efficient 2D electrode owing to its extra-high conductivity, thickness controllability, and van der Waals contact. However, as the electrode, applications of VSe2 to various materials are still lacking. Here, by employing ultrafast time-resolved spectroscopy, we study VSe2-thickness-dependent interfacial effects in heterostructures with topological insulator Bi2Se3 that is severely affected by contact with conventional 3D electrodes. Our results show unaltered Dirac surface state of Bi2Se3 against forming junctions with VSe2, efficient ultrafast hot electron transfer from VSe2 to Bi2Se3 across the interface, shortened metastable carrier lifetimes in Bi2Se3 due to dipole interactions enabling efficient current flow, and the electronic level shift (similar to tens meV) of bulk states of Bi2Se3 by interfacial interactions, which is similar to 10 times lower compared to conventional electrodes, implying weak Fermi level pinning. Our observations confirm VSe2 as an ideal electrode for efficient Bi2Se3-based-applications with full utilization of topological insulator characteristics.
Publisher
NATURE PORTFOLIO
Issue Date
2022-07
Language
English
Article Type
Article
Citation

COMMUNICATIONS PHYSICS, v.5, no.1

ISSN
2399-3650
DOI
10.1038/s42005-022-00961-9
URI
http://hdl.handle.net/10203/297483
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0