Wide-Range Size Fractionation of Graphene Oxide by Flow Field-Flow Fractionation

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 201
  • Download : 0
Many interesting properties of 2D materials and their assembled structures are strongly dependent on the lateral size and size distribution of 2D materials. Accordingly, effective size separation of polydisperse 2D sheets is critical for desirable applications. Here, we introduce flow field-flow fractionation (FlFFF) for a wide-range size fractionation of graphene oxide (GO) up to 100 mu m. Two different separation mechanisms are identified for FlFFF, including normal mode and steric/ hyperlayer mode, to size fractionate wide size-distributed GOs while employing a crossflow field for either diffusion or size-controlled migration of GO. Obviously, the 2D GO sheet reveals size separation behavior distinctive from typical spherical particles arising from its innate planar geometry. We also investigate 2D sheet size-dependent mechanical and electrical properties of three different graphene fibers produced from size-fractionated GOs. This FlFFF-based size selection methodology can be used as a generic approach for effective wide-range size separation for 2D materials, including rGO, TMDs, and MXene.
Publisher
AMER CHEMICAL SOC
Issue Date
2022-06
Language
English
Article Type
Article
Citation

ACS NANO, v.16, no.6, pp.9172 - 9182

ISSN
1936-0851
DOI
10.1021/acsnano.2c01402
URI
http://hdl.handle.net/10203/297327
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0