Porous Pd-Sn Alloy Nanotube-Based Chemiresistor for Highly Stable and Sensitive H2 Detection

Cited 10 time in webofscience Cited 0 time in scopus
  • Hit : 121
  • Download : 0
While H2 is indispensable as a green fuel source, it is highly flammable and explosive. Because it is difficult to detect due to its lack of odor and color, a solution for proper monitoring of H2 leakage is essential to ensure safe handling. To this end, we have successfully fabricated hollow Pd-Sn alloy nanotubes (NTs) through electrospinning and a subsequent etching method, which is the first demonstration of synthesizing Pd-based hollow alloy nanofibers with ultrafine grain sizes. We found that the alloying of Pd with Sn could effectively prevent degradation of the sensing performance upon the alpha-beta phase transition during hydrogen detection. Besides, the highly porous structure with smaller nanograins offered more exposed active sites and higher gas accessibility to bulk materials. The resultant Pd-Sn NTs exhibited excellent sensitivity toward H2 (0.00005-3%). Notably, the limit of detection of 0.0001% is an outstanding achievement on H2 sensing among state-of-the-art H2 sensors. Moreover, when exposed to a high concentration of H2 (3%), Pd-Sn NTs showed excellent cycling stability with a standard deviation of 0.07% and a sensitivity of 9.27%. These obtained sensing results indicate that Pd-Sn NTs can be used as a highly sensitive and stable H2 gas sensor at room temperature (25 degrees C).
Publisher
AMER CHEMICAL SOC
Issue Date
2022-06
Language
English
Article Type
Article
Citation

ACS APPLIED MATERIALS & INTERFACES, v.14, no.24, pp.28378 - 28388

ISSN
1944-8244
DOI
10.1021/acsami.2c05002
URI
http://hdl.handle.net/10203/297277
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0