On the Convergence of Physics Informed Neural Networks for Linear Second-Order Elliptic and Parabolic Type PDEs

Cited 88 time in webofscience Cited 0 time in scopus
  • Hit : 328
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorShin, Yeonjongko
dc.contributor.authorDarbon, Jeromeko
dc.contributor.authorKarniadakis, George Emko
dc.date.accessioned2022-07-06T02:00:27Z-
dc.date.available2022-07-06T02:00:27Z-
dc.date.created2022-07-06-
dc.date.issued2020-11-
dc.identifier.citationCOMMUNICATIONS IN COMPUTATIONAL PHYSICS, v.28, no.5, pp.2042 - 2074-
dc.identifier.issn1815-2406-
dc.identifier.urihttp://hdl.handle.net/10203/297249-
dc.description.abstractPhysics informed neural networks (PINNs) are deep learning based techniques for solving partial differential equations (PDEs) encountered in computational science and engineering. Guided by data and physical laws, PINNs find a neural network that approximates the solution to a system of PDEs. Such a neural network is obtained by minimizing a loss function in which any prior knowledge of PDEs and data are encoded. Despite its remarkable empirical success in one, two or three dimensional problems, there is little theoretical justification for PINNs. As the number of data grows, PINNs generate a sequence of minimizers which correspond to a sequence of neural networks. We want to answer the question: Does the sequence of minimizers converge to the solution to the PDE? We consider two classes of PDEs: linear second-order elliptic and parabolic. By adapting the Schauder approach and the maximum principle, we show that the sequence of minimizers strongly converges to the PDE solution in C-0. Furthermore, we show that if each minimizer satisfies the initial/boundary conditions, the convergence mode becomes H-1. Computational examples are provided to illustrate our theoretical findings. To the best of our knowledge, this is the first theoretical work that shows the consistency of PINNs.-
dc.languageEnglish-
dc.publisherGLOBAL SCIENCE PRESS-
dc.titleOn the Convergence of Physics Informed Neural Networks for Linear Second-Order Elliptic and Parabolic Type PDEs-
dc.typeArticle-
dc.identifier.wosid000591596200001-
dc.identifier.scopusid2-s2.0-85097453592-
dc.type.rimsART-
dc.citation.volume28-
dc.citation.issue5-
dc.citation.beginningpage2042-
dc.citation.endingpage2074-
dc.citation.publicationnameCOMMUNICATIONS IN COMPUTATIONAL PHYSICS-
dc.identifier.doi10.4208/cicp.OA-2020-0193-
dc.contributor.localauthorShin, Yeonjong-
dc.contributor.nonIdAuthorDarbon, Jerome-
dc.contributor.nonIdAuthorKarniadakis, George Em-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorPhysics informed neural networks-
dc.subject.keywordAuthorconvergence-
dc.subject.keywordAuthorHolder regularization-
dc.subject.keywordAuthorelliptic and parabolic PDEs-
dc.subject.keywordAuthorSchauder approach-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 88 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0