Wall-attached structures in a drag-reduced turbulent channel flow

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 30
  • Download : 0
We explore wall-attached structures in a drag-reduced turbulent channel flow with the Navier slip boundary condition. Three-dimensional coherent structures of the streamwise velocity fluctuations (u) are examined in an effort to assess the influence of wall-attached u structures on drag reduction. We extract the u clusters from the direct numerical simulation (DNS) data; the DNS data for the no-slip condition are included for comparison. The wall-attached structures, which are physically adhered to the wall, in the logarithmic region are self-similar with their height and contribute to the presence of logarithmic behaviour. The influence of the streamwise slip on wall-attached structures is limited up to the lower bound of the logarithmic region. Although wall-attached self-similar structures (WASS) slide at the wall, the formation and hierarchy of WASS are sustained. Weakened mean shear by the streamwise slip results in a diminution in the population density of wall-attached structures within the buffer layer, leading to sparse population of WASS. In contrast, the space occupied by WASS in the fluid domain increases. The streamwise slip induces long tails in the near-wall part of WASS, reminiscent of the footprints of large-scale motions. Both a decrease in the population density of WASS and a reduction in the density of skin friction of WASS are responsible for the overall drag reduction.
Publisher
CAMBRIDGE UNIV PRESS
Issue Date
2022-06
Language
English
Article Type
Article
Citation

JOURNAL OF FLUID MECHANICS, v.943

ISSN
0022-1120
DOI
10.1017/jfm.2022.432
URI
http://hdl.handle.net/10203/296998
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0