Acoustofluidic Stimulation of Functional Immune Cells in a Microreactor

Cited 14 time in webofscience Cited 0 time in scopus
  • Hit : 417
  • Download : 0
The cytotoxic response of natural killer (NK) cells in a microreactor to surface acoustic waves (SAWs) is investigated, where the SAWs produce an acoustic streaming flow. The Rayleigh-type SAWs form by an interdigital transducer propagated along the surface of a piezoelectric substrate in order to allow the dynamic stimulation of functional immune cells in a noncontact and rotor-free manner. The developed acoustofluidic microreactor enables a dynamic cell culture to be set up in a miniaturized system while maintaining the performance of agitating media. The present SAW system creates acoustic streaming flow in the cylindrical microreactor and applies flow-induced shear stress to the cells. The suspended NK cells are found to not be damaged by the SAW operation of the adjusted experimental setup. Suspended NK cell aggregates subjected to an SAW treatment show increased intracellular Ca2+ concentrations. Simultaneously treating the NK cells with SAWs and protein kinase C activator enhances the lysosomal protein expressions of the cells and the cell-mediated cytotoxicity against target tumor cells. These have important implications by showing that acoustically actuated system allows dynamic cell culture without cell damages and further alters cytotoxicity-related cellular activities.
Publisher
WILEY
Issue Date
2022-05
Language
English
Article Type
Article
Citation

ADVANCED SCIENCE, v.9, no.16

ISSN
2198-3844
DOI
10.1002/advs.202105809
URI
http://hdl.handle.net/10203/296982
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 14 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0