Rational Development of Co-Doped Mesoporous Ceria with High Peroxidase-Mimicking Activity at Neutral pH for Paper-Based Colorimetric Detection of Multiple Biomarkers

Cited 40 time in webofscience Cited 0 time in scopus
  • Hit : 523
  • Download : 0
Peroxidase-mimicking nanozymes have been extensively studied, however, their application is limited by the requirement for an acidic pH. Herein, the development of Co-doped mesoporous cerium oxide (Co-m-ceria) is reported, which operates optimally at a near-neutral pH and exhibits a peroxidase-like catalytic efficiency that is 600-times higher than that of pristine m-ceria. Density functional theory (DFT) calculations for the application of pristine and various metal-doped m-ceria in peroxidase-like reactions under different pH environments are conducted to select Co as the appropriate dopant. The high peroxidase-like activity of Co-m-ceria under neutral conditions and its mesoporous nature enable its application in a one-pot cascade reaction system, wherein biomarkers of oxidative enzymes can be detected without altering the pH. Five different oxidative enzymes are immobilized in the pores of Co-m-ceria at high loadings, followed by incorporation of the enzyme-containing Co-m-ceria in paper microfluidic devices for the convenient and simultaneous detection of multiple biomarkers. The Co-m-ceria-incorporated paper microfluidic device enables the selective and sensitive determination of multiple biomarkers using a smartphone-acquired image. This study demonstrates the potential of the rational design of nanozymes and their application in paper microfluidic devices, laying the groundwork for future applications of nanozymes in point-of-care testing environments.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2022-05
Language
English
Article Type
Article
Citation

ADVANCED FUNCTIONAL MATERIALS, v.32, no.21, pp.2112428

ISSN
1616-301X
DOI
10.1002/adfm.202112428
URI
http://hdl.handle.net/10203/296810
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 40 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0