Experimental and numerical investigation of micro-scale effusion and transpiration air cooling on cascaded turbine blades

Cited 10 time in webofscience Cited 0 time in scopus
  • Hit : 137
  • Download : 0
Micro cooling utilizing the micro-sized cooling hole or a porous structure on the surface is a promising technology in cooling applications of gas turbine blades. Although there have been numerous parametric studies on basic geometries to enhance the performance of micro cooling, little has been done for experimental study on blade geometry. This study comprehensively investigated micro cooling performance by applying effusion and transpiration cooling to C3X blades arranged in a cascade. The overall cooling effectiveness distribution on the blade surface was estimated by using infrared thermometry. In addition, the velocity and thermal boundary layer formation by cooling air were qualitatively investigated by a flow visualization using the smoke-laser sheet technique and numerical simulation using the shear stress transport k-omega turbulence model. Micro cooling performs effectively because of the convective heat transfer through the microstructure of the blade wall but also the reduction of heat transfer from the hot mainstream due to the formation of a uniform coolant layer on the blade surface. Especially at the mass flow ratio of 5.3% used for typical gas turbine cooling, effusion cooling and transpiration cooling achieve the overall cooling effectiveness of 0.4 and 0.6, respectively.
Publisher
ELSEVIER
Issue Date
2022-04
Language
English
Article Type
Article
Citation

CASE STUDIES IN THERMAL ENGINEERING, v.32

ISSN
2214-157X
DOI
10.1016/j.csite.2022.101892
URI
http://hdl.handle.net/10203/296726
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0