Bilayer-folded lamellar mesophase induced by random polymer sequence

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 36
  • Download : 0
Randomness is perceived in two different extremes, in macroscopic homogeneity and local heterogeneity, but apparently far away from order. Here, the authors show that a periodic order can spontaneously arise from an ensemble of binary random copolymer sequences to induce recurrent folding of a self-assembled bilayer structure in water. Randomness is perceived in two different extremes, in macroscopic homogeneity and local heterogeneity, but apparently far away from order. Here we show that a periodic order spontaneously arises from a binary random copolymer when self-assembly occurs in an ensemble containing > 10(15) possible chain sequences. A Bernoullian distribution of hydrophilic and hydrophobic side chains grafted onto a linear backbone was constructed by random copolymerization. When the polymer chains associate in water, a sequence matching problem occurs because of the drastic heterogeneity in sequence: this is believed to generate local curvature mismatches which deviate from the ensemble-averaged interfacial curvature. Periodic folding of the self-assembled bilayer stabilizes the curvature instability as recurring hinges. Reminiscent of chain-folded lamellae found in polymer crystallization, this new liquid crystalline mesophase, characterized as bilayer-folded lamellae, manifests itself as an anisotropically alignable birefringent hydrogel with structural hierarchy across multiple length scales.
Publisher
NATURE PORTFOLIO
Issue Date
2022-05
Language
English
Article Type
Article
Citation

NATURE COMMUNICATIONS, v.13, no.1

ISSN
2041-1723
DOI
10.1038/s41467-022-30122-z
URI
http://hdl.handle.net/10203/296553
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0