PCA-based sub-surface structure and defect analysis for germanium-on-nothing using nanoscale surface topography

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 160
  • Download : 0
Empty space in germanium (ESG) or germanium-on-nothing (GON) are unique self-assembled germanium structures with multiscale cavities of various morphologies. Due to their simple fabrication process and high-quality crystallinity after self-assembly, they can be applied in various fields including micro-/nanoelectronics, optoelectronics, and precision sensors, to name a few. In contrast to their simple fabrication, inspection is intrinsically difficult due to buried structures. Today, ultrasonic atomic force microscopy and interferometry are some prevalent non-destructive 3-D imaging methods that are used to inspect the underlying ESG structures. However, these non-destructive characterization methods suffer from low throughput due to slow measurement speed and limited measurable thickness. To overcome these limitations, this work proposes a new methodology to construct a principal-component-analysis based database that correlates surface images with empirically determined sub-surface structures. Then, from this database, the morphology of buried sub-surface structure is determined only using surface topography. Since the acquisition rate of a single nanoscale surface micrograph is up to a few orders faster than a thorough 3-D sub-surface analysis, the proposed methodology benefits from improved throughput compared to current inspection methods. Also, an empirical destructive test essentially resolves the measurable thickness limitation. We also demonstrate the practicality of the proposed methodology by applying it to GON devices to selectively detect and quantitatively analyze surface defects. Compared to state-of-the-art deep learning-based defect detection schemes, our method is much effortlessly finetunable for specific applications. In terms of sub-surface analysis, this work proposes a fast, robust, and high-resolution methodology which could potentially replace the conventional exhaustive sub-surface inspection schemes.
Publisher
NATURE PORTFOLIO
Issue Date
2022-05
Language
English
Article Type
Article
Citation

SCIENTIFIC REPORTS, v.12, no.1

ISSN
2045-2322
DOI
10.1038/s41598-022-11185-w
URI
http://hdl.handle.net/10203/296540
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0