BUDA-MESMERISE: Rapid acquisition and unsupervised parameter estimation for T-1, T-2, M-0, B-0, and B-1 maps

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 41
  • Download : 0
Purpose Rapid acquisition scheme and parameter estimation method are proposed to acquire distortion-free spin- and stimulated-echo signals and combine the signals with a physics-driven unsupervised network to estimate T-1, T-2, and proton density (M-0) parameter maps, along with B-0 and B-1 information from the acquired signals. Theory and Methods An imaging sequence with three 90 degrees RF pulses is utilized to acquire spin- and stimulated-echo signals. We utilize blip-up/-down acquisition to eliminate geometric distortion incurred by the effects of B-0 inhomogeneity on rapid EPI acquisitions. For multislice imaging, echo-shifting is applied to utilize dead time between the second and third RF pulses to encode information from additional slice positions. To estimate parameter maps from the spin- and stimulated-echo signals with high fidelity, 2 estimation methods, analytic fitting and a novel unsupervised deep neural network method, are developed. Results The proposed acquisition provided distortion-free T-1, T-2, relative proton density (M0), B-0, and B-1 maps with high fidelity both in phantom and in vivo brain experiments. From the rapidly acquired spin- and stimulated-echo signals, analytic fitting and the network-based method were able to estimate T-1, T-2, M-0, B-0, and B-1 maps with high accuracy. Network estimates demonstrated noise robustness owing to the fact that the convolutional layers take information into account from spatially adjacent voxels. Conclusion The proposed acquisition/reconstruction technique enabled whole-brain acquisition of coregistered, distortion-free, T-1, T-2, M-0, B-0, and B-1 maps at 1 x 1 x 5 mm(3) resolution in 50 s. The proposed unsupervised neural network provided noise-robust parameter estimates from this rapid acquisition.
Publisher
WILEY
Issue Date
2022-07
Language
English
Article Type
Article
Citation

MAGNETIC RESONANCE IN MEDICINE, v.88, no.1, pp.292 - 308

ISSN
0740-3194
DOI
10.1002/mrm.29228
URI
http://hdl.handle.net/10203/296402
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0