On 1-subdivisions of transitive tournaments

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 46
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Jaehoonko
dc.contributor.authorLee, Hyunwooko
dc.contributor.authorSeo, Jaehyeonko
dc.date.accessioned2022-04-25T06:00:30Z-
dc.date.available2022-04-25T06:00:30Z-
dc.date.created2022-04-25-
dc.date.created2022-04-25-
dc.date.created2022-04-25-
dc.date.issued2022-03-
dc.identifier.citationELECTRONIC JOURNAL OF COMBINATORICS, v.29, no.1-
dc.identifier.issn1077-8926-
dc.identifier.urihttp://hdl.handle.net/10203/295870-
dc.description.abstractThe oriented Ramsey number (r) over right arrow (H) for an acyclic digraph H is the minimum integer n such that any n-vertex tournament contains a copy of H as a subgraph. We prove that the 1-subdivision of the k-vertex transitive tournament Hk satisfies (r) over right arrow (H-k) = O(k(2) log log k). This is tight up to multiplicative log log k-term. We also show that if T is an n-vertex tournament with Delta+(T) - delta(+)(T) = O(n/k) - k(2), then T contains a 1-subdivision of (K) over right arrow (k), a complete k-vertex digraph with all possible k(k - 1) arcs. This is tight up to multiplicative constant.-
dc.languageEnglish-
dc.publisherELECTRONIC JOURNAL OF COMBINATORICS-
dc.titleOn 1-subdivisions of transitive tournaments-
dc.typeArticle-
dc.identifier.wosid000777911900001-
dc.identifier.scopusid2-s2.0-85127446134-
dc.type.rimsART-
dc.citation.volume29-
dc.citation.issue1-
dc.citation.publicationnameELECTRONIC JOURNAL OF COMBINATORICS-
dc.identifier.doi10.37236/10788-
dc.contributor.localauthorKim, Jaehoon-
dc.contributor.nonIdAuthorLee, Hyunwoo-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusNUMBERS-
dc.subject.keywordPlusGRAPHS-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0